						-21	
,	R	egistration no:				j	
Total	Num	ber of Pages: 02	100	109	199	B.TECH PECI 5401	109
	,	100 100	109 Tin	DUCES ENGIN CIVIL ENGINE ne: 3 Hours	IEERING	1199	199
	Α	nswer Questior The figi	Q. (x marks: 70 CODE: X225 compulsory nt hand margin	and any five n indicate ma	from the rest	:.
		100 100	109	109	109	169	104
Q1	a)	Answer the follow Name different marea.	ring questions: ethods of determ	ining average rai	nfall in a particu	ılar catchment	(2 x 10)
	b)	What is the functi	on of current mete	er?	The same		
	c)	What do you mea					1 2
	ď)		een φ index and V		109	en	109
	e)	What is design flo		W. M. Carlot	· · · · · · · · · · · · · · · · · · ·	Charles In Control	fak i
	f)	Differentiate betw	een stream flow a	nd runoff.			
-	g)	If the conjugate of	depths before and	after the jump a	re 2 m and 3 n	n respectively	
		then the loss of e			109		
	h)	What is critical flo	w in a <mark>open</mark> chanr	nel?		109	109
	i)	What is the functi	on of b <mark>reak</mark> waters	?			
	j)	What are the requ	uirements of a con	nmercial harbor?			
Q2	a)	[™] Describe t <mark>he prin</mark> with a ne <mark>at sketcl</mark>				ling raingauge	(6)
	b)	Define pan coeffice and land pans.	clent. Discuss the	relative merits ar	nd demerits of si	unken, floating	(4)
Q3	a)	[™] Define catchment topographic maps		catchment bound	dary can be obt	ained'from the	(5)
					•		

	b)	Describe the principle involved in the measurement of stream flow by dilution method. What are the requisites of a good tracer used in the dilution method.	on (5)
Q4		The ordinates of a 4 h U.H. of a basin of area 200 Km ² measured at 1 h interval are 6, 36, 66, 91, 106, 93, 79, 68, 58, 49,41,34,27, 23, 17, 13, 9, 6, 3 and 1.5 m ³ /s	S
		respectively. Obtain the ordinates of a 3 h U.H. for the basin using the S-curve technique.	
Q5	a)	109 109 109	(5)
	b)	Write a brief note on frequency factor and its estimation in Gumbel's distribution.	(5)
Q 6	a)	™What are the [∞] assumptions for Gradually Varied Flow? Give two examples and Derive the equation for GVF.	(6)
\	b)	An earthen channel with a base width 6 m and side slope 1H: 2V carries water with a depth of 1.5 m. the bed slope is 1 in 1000. Calculate the discharge if $\eta = 0.03$. Also calculate the average shear stress at the channel boundary.	(4)
		109	109
ľ	a)	What information should be collected and rules to be observed in the design of a breakwater.	(5)
)	b)	Define Wharf, quay, pier, jetty and fender.	(5)
8		Write short notes on any two of the followings	(5)
	a) b) c) d)	Stage discharge curve Instantaneous unit hydroghaph Most efficient trapezoidal channel section Specific Energy diagram	(5 x 2)

B. Tech PECI 5401

Fourth Year Special Examination – 2014-15 WATER RESOURCE ENGINEERING BRANCH: CIVIL

BRANCH: CIVIL

QUESTION CODE: N 576

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define catchment and topographic devide.
- (b) Define frequency factor and its estimation in Gumbel's method.
- (c) What is the principle involved in measurement of stream flow by the dilution method?
- (d) What are the factors affecting infiltration?
- (e) Sketch a typical hydrograph resulting from an isolated storm and identify the features of the same.
- (f) Name different methods for estimating design flood.
- (g) What is critical flow in a open channel?
- (h) Sketch the possible water surface profiles for Mild slope followed by milder slope and steep slope.
- (i) What are the function of jetties?
- (j) What are the requirements of a commercial harbor.
- (a) Describe the principle of working of a tipping bucket type recording rain gauge with a neat sketch. Mention its advantages and disadvantages.
 - (b) A major river basin is divided into four sub basins with areas of 920, 705, 1075 and 1665 km². If the average annual rainfall on these sub basins is 73, 85, 112 and 100 cm respectively. What is the average annual rainfall for the basin as a whole?
- (a) Define pan coefficient. Discuss the relative merits and demerits of sunken, floating and land pans.

P.T.O.

5

- Explain the procedure for obtaining the stage-discharge relationship stream by using the stage-discharge data from a site with permanent (b) control.
- The direct runoff hydrograph resulting from a 5.0 cm of effective rainfall of 6 h duration is given below. Determine the area of the catchment and the (a) 4. ordinates of the 6 h unit hydrograph.

C	Juliales of the	0 11 0		,	<u> </u>						- 1	00	00	70	
Ī	Time (h)	0	6	12	18	24	30	36	42	48	54	60	66	12	
	Direct runoff	0	25	175	320	360	310	230	165	105	60	30	10	0	
	(cumecs)														
		1	4	1 6.40	unth	oticu	nit h	vdro	aran	h				2	

- What do you understand by synthetic unit hydrograph. (b)
- Describe the Modified Puls method of reservoir routing. 5. (a)
 - Explain the method of determining the Muskingham parameters K and x of a (b) reach from a pair of observed inflow and outflow hydrographs.
- Show that a trapezoidal channel section with given A and y is most efficient 6. (a) when its sides are inclined at 60° with the horizontal.
 - A 3.0 m wide rectangular channel carries 2.4 m³/s discharges at a depth of $0.70 \, \text{m}.$
 - Determine specific energy at 0.70 m depth. (i)
 - Determine the critical depth. (ii)
 - Is the flow subcritical of supercritical? (iii)
 - Determine the depth alternate to 0.70 m (iv)
 - If Mannings n is 0.015, determine the critical slope. (v)
- Describe the barge method of mound construction. 7. (a)
 - What are the design considerations of a floating dock. Mention advantages (b) and disadvantages of floating dock. 5×2
- Write short notes on any two of the followings: 8.
 - Φ-index (a)
 - S curve hydroghaph (b)
 - Hydraulic Jump (c)
 - River training works. (d)

		nt .							
stration No.:		11. 1			1,11	* × .	100	7 1-1	
St.	ament t	broke	Lot in	18 11 19 7	Standards.	141 100	_151 PF	1 44	

Total number of printed pages - 2

B. Tech

Seventh Semester Examination – 2013 WATER RESOURCES ENGINEERING

BRANCH: CIVIL

QUESTION CODE: C-295

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What do you mean by watershed?
- (b) What are the precautions to be taken in selecting a site for the location of a rain gauge?
- (c) What is infiltration capacity?
- (d) If two 4 hour unit hydrographs are staggered by 4 hours and added graphically the resulting hydrograph will be what?
- (e) What is the probability of a 10 year flood to occur at least once in the next 4 year?
- (f) Differentiate between reservoir routing and channel routing.
- (g) What is specific energy diagram?
- (h) What is the critical depth of flow in a most economical triangular channel section for a discharge of 1 m³/s?
- (i) An open channel carries water with a velocity of 0.605 m/s. If the average bed shear stress is 1.0 N/m², find the Chezy coefficient C.
- (j) What are the functions of jetties?
- 2. (a) Describe with neat sketch the principle of working of Symon's non-recording raingauge. How does the Indian standard rain gauge differ from Symon's gauge?
 - (b) Describe evapotranspiration. Explain different methods to reduce evaporation losses.

5

P.T.O.

- 3. (a) Explain the salient features of a current meter. Describe briefly the procedure of using a current meter for measuring velocity in a stream. 5
 - (b) Define Φ index and W index and bring out the difference between them. How is Φ index determined from the rainfall hyetograph?
 - The ordinates of a flood hydrograph, resulting from two successive storms each
 of 1 cm rainfall excess and 3 hour duration, are tabulated below. Find a 6 hour
 unit hydrograph.

Time (hour)	0	6	12	18	24	30	36	42	48	54	60
Ordinate of 6 hr	10	30	90	220	280	220	166	126	92	62	40
unit hydrograph (m³/s)			ä.	F-1/-3		14.	2	- 2			ae ji

- 5. (a) The mean annual flood of a river is 500 m³/s and the standard deviation of the annual flood time series is 100 m³/s. What is the probability of a flood of magnitude 1000 m³/s occurring in the river within next 6 years. Use Gumbel's method and assume the sample size to be very large.
 - (b) What is flood routing? Explain the basic equations used for flood routing.
- 6. (a) A rectangular channel 8 m wide has a depth of water 4 m. If the slope of the bed of the channel is 1 in 3000, find the discharge through the channel. Take the value of n = 0.027 in the Kutter's formula.
 - (b) What do you mean by hydraulic jump in open channel flow? If the conjugate depths before and after the jump are 1 m and 3 m respectively, then find the loss of energy in the hydraulic jump.
- 7. (a) Explain with neat sketches how mound breakwaters are protected from wave action.
 - (b) Enumerate the principal forces acting on a graving dock.
- 8. Write short notes on any two of the following:
 - (a) Pan evaporation
 - (b) River training works
 - (c) Instantaneous Unit Hydrograph
 - (d) Most efficient trapezoidal channel section.

PECI 5401

5

5×2

	(and										
egistration	n No. :					2		-	- 4		
Total numb	per of pr	inted pac	ies – 2						,	В. Т	ooh
	•	, ,								PECI5	
	Sevent	h Seme	ster (S	Special) Exa	min	atio	n –	2013		701
		WATER							2010	•	
	160	WALLI				IIVE	אוואב	G			
	,			ANCH : C							
			QUESTI	ON COD)E : D 4	407					
				l Marks	•						
				ne:3 Ho							
Answ		tion No. 1								he rest.	
	T	he figures	in the rig	ht-hand r	nargin	indic	ate n	narks			
1. An	swer the	following	questions	S:		. 1				2>	×10
(a)	Define	evapotran	spiration.								
(b)		are the pred	autions t	o be take	n in se	lectir	ng a si	ite for	the lo	ocation	of a
(c	rain ga	tuge? s the avera	age nan g	oefficien	t for th	e sta	ndar	aus	weatl	ner Bur	eau
(0		Apan?	igo parre	,0011101011	.2 .					4	
(0	l) Explai	n the rainfa			n and f	reque	ency i	relatio	onship	ο.	
(6		s a unit hyd			dvoor	eflood	d man	noto	NOOLIE	ot all du	rina
· (f	•	s the proba year life o			eu yeai	11000	ımay	HOLC	occui	al all uu	illig
g		s specific				1 114-1			4.3		
h)		Kutter's eq									
i)		are the fund			- 1	1. P		0			
j) 2. (a) Descri	are the fact be classific	ation of c	ung the s	t How	on of	site to	or a h	arbor	? !!!> off o	
	outlet	of a catchm	ent resul	ting from	rainfa	ll ove	rit?	VVOIT	N Out I	unoma	it the 5
(b) Detern	nine 🛭 inde	x and Wi	ndex for	a wate	rshe	d with	an a	rea o	f 100 kr	$n^2 \Lambda$
	rainfal	I with the s	pecificati	ons give	n in the	e follo	owing	r tahl	A 000	urrod i	o the
	waters	ned. The a	verage fl	ow meas	ured a	t the	outle	t of th	e wa	tershed	was

100 m ³ /s. Assume	the retention to be 10% of rainfall.
Time (min)	Intensity (cm/hr)
0-30	0.300
60-120	1.205
120-150	1.500

- 3. (a) Explain the different methods of determining the average rainfall over a catchment due o a storm.
 - (b) Following velocities were recorded in a stream by means of current meter. If the depth of flow at the point is 6 m and the width of section is 3.0 m, determine the discharge.

Depth above bed	0	0.75	1.0	1.2	2.0	3.0	4.8	5.0	
in m	0	0.4	0.6	0.65	0.75	0.85	1.0	1.2	
Velocity in m/s	10	0.4	0.0	0.00	0				

- 4. (a) What is an IUH? What are its characteristics?
 - (b) Describe the S curve method of developming a 6-h Unit Hydrograph using 12-h UH of the catchment.
- 5. (a) Differentiate between reservoir routing and channel routing.
 - (b) Route the following hydrograph through a river reach for which K = 22.0 hr and x = 0.25. At the start of the inflow flood, the outflow discharge is $40 \text{ m}^3/\text{s}$.

Time (hr)	0	12	24	36
Inflow (m ³ /s)	40	65	165	250

- 6. (a) What are the assumptions for GVF? Derive the equation for GVF. 5
 - (b) A hydraulic jump is formed in a 5 m wide rectangular channel carrying a discharge of 20 m³/s. The pre jump depth is 0.5 m. Find the post jump depth, post jump Froude number, and energy loss in the jump.
- 7. (a) Distinguish between natural and artificial harbours. Explain how an artificial harbor could be made to provide safe anchorage.
 - (b) State the precautions necessary in the design and construction of upright wall breakwaters to withstand the effects of the destructive forces acting on them.
- 8. Write short notes on any two of the following:
 - Cymon's rain gauge
 - (a) Symon's rain gauge
 - (b) River traing works
 - (c) Most efficient circular channel section.

3

7

5×2

Seventh Semester Examinations – 2012-13 WATER RESOURCES ENGINEERING

Full Marks: 70 Time: 3 Hours

Answer six questions including question No.1 which is compulsory Figures in the right hand margin indicate marks

1. Answer the followings	*10
a. How many rain gauge stations are necessary to measure the mean rainfall	with
certain predefined error?	-4
b. What is double mass curve?	
c. Why moving average of any time series data is carried out?	
d. How probability of occurrence and return period of a variable related?	
e. Why the pan coefficients of various evaporimeters differ?	
f. Differentiate perennial and ephemeral stream.	
g. How shape of the catchment affects shape of the hydrograph?	
h. What is physical sense of specific duration of an unit hydrograph?	
i. What is linear reservoir?	
j. What is the philosophy of most economical section?	
2. a) Explain the procedure of filling the missing data of a time series.	15
b) Compare the thissen-polygon and isohyetal method of finding the mean rainfall.	/5
3. a) Explain various types of infiltrometers. Discuss the advantages of one typ infiltrometer over the other.b) Explain the equipments used for measurement of velocity.	-

4. The mass curve of an isolated storm in a 500 ha watershed is as follows:

Time from	0	2	4	6	8	10	12	14	16	10
start (Hr)							1 10 1		10	10
Cumulative	0	0.8	2.6	2.8	4.1	7.3	10.8	11.8	12.4	12.6
rainfall (cm)								1		12.0

If the direct runoff produced by the storm is measured at the outlet of the watershed as 0.34 Mm^3 , estimate the φ -index of the storm and duration of rainfall excess.

5. The ordinates of a 6-h unit hydrograph are given below:

	The orumate	25 01	a 0-11	tillit ii)	4108	104	20	26	42	48	l 54	60	66
١	Time (hr)	0	6	12	18	24	30	30		70	100	50	0
	Ordinate of	0	250	600	800	700	600	450	320	200	100	50	U
	6-h UH												
	(m^3/s)												

A storm had three successive 6-h intervals of rainfall magnitude of 3.0, 5.0 and 4.0 cm respectively. Assuming a φ -index of 0.20 cm/h and a base flow of 30 m³/s, determine the resulting hydrograph of flow.

6. Using the ordinates of a 12-h unit hydrograph given below, compute the ordinates of the 6-h unit hydrograph of the basin.

Time	Ordinate of 12-h unit	Time	Ordinate of 12-h
(Hour)	hydrograph	(Hour)	unit hydrograph
-	(m³/sec)		(m ³ /sec)
0	0 7	42	75 215 21 58
6	37	48	35
12	111	54	17
18	150	60	2 30 12 8 1 2 6 1
24	146	66	3
30	114	72	0
36	84	TICE 1979	THE THE RESERVE OF THE PERSON

/10

7. Route the following flood hydrograph through the river reach for which Muskingum coefficient K=8 hours and x = 0.25.

Time (hr)	0	4	8	12	16	20	24	28	7.
Inflow (m ³ /s)	8	16	30	30	25	20	15	10	1

The initial outflow discharge from the reach is 8.0 m³/s.

/10

8. a) Explain hydraulic jump by the help of specific energy curve.

15

b) Explain wall type breakwater with a cross sectional view.

Seventh Semester Examinations – 2012-13 WATER RESOURCES ENGINEERING Full Marks: 70

Time: 3 Hours

Answer six questions including question No.1 which is compulsory Figures in the right hand margin indicate marks

1	Answer the followings						/2*	10
•	a. How many rain gauge stations are	necessary	to	measure	the	mean	rainfall	with
	certain predefined error?							

- b. What is double mass curve?
- c. Why moving average of any time series data is carried out?
- d. How probability of occurrence and return period of a variable related?
- e. Why the pan coefficients of various evaporimeters differ?
- f. Differentiate perennial and ephemeral stream.
- g. How shape of the catchment affects shape of the hydrograph?
- h. What is physical sense of specific duration of an unit hydrograph?
- i. What is linear reservoir?
- j. What is the philosophy of most economical section?
- 2. a) Explain the procedure of filling the missing data of a time series.
 - b) Compare the thissen-polygon and isohyetal method of finding the mean rainfall.

3. a) Explain various types of infiltrometers. Discuss the advantages of one type of infiltrometer over the other.

- b) Explain the equipments used for measurement of velocity. /5
- 4. The mass curve of an isolated storm in a 500 ha watershed is as follows:

Time from start (Hr)	0	2	4	6	8	10	12	14	16	18
Cumulative rainfall (cm)	0	0.8	2.6	2.8	4.1	7.3	10.8	11.8	12.4	12.6

If the direct runoff produced by the storm is measured at the outlet of the watershed as 0.34 Mm³, estimate the φ-index of the storm and duration of rainfall excess.

15

5. The ordinates of a 6-h unit hydrograph are given below:

The ordinate	SUL	a 0-11	uiiit iij	diobi	pir ter			42	10	54	60	66	ı
Time (hr)	0	6	12	18	24	30	36	42	40	100	50	0	
Ordinate of	0	250	600	800	700	600	450	320	200	100	30	U	
6-h UH													l
(m^3/s)				-									1

A storm had three successive 6-h intervals of rainfall magnitude of 3.0, 5.0 and 4.0 cm respectively. Assuming a φ -index of 0.20 cm/h and a base flow of 30 m³/s, determine the resulting hydrograph of flow.

6. Using the ordinates of a 12-h unit hydrograph given below, compute the ordinates of the 6-h unit hydrograph of the basin.

Time	Ordinate of 12-h unit	Time	Ordinate of 12-h
(Hour)	hydrograph	(Hour)	unit hydrograph (m ³ /sec)
	(m³/sec)		`
0	O GOTEVO EUL.	42	58
6	37	48	35
12	111	54	17 .
18	the sale in 150 agents rose to	60	to erioda 18 M g
24	146	66	300 d
30	114	72	0
36	84	(MOVIDA)	Charlett, Charlett, i -

/10

7. Route the following flood hydrograph through the river reach for which Muskingum coefficient K=8 hours and x=0.25.

Time (hr)	0	4	8	12	16	20	24	28
Inflow (m ³ /s)	8	16	30	30	25	20	15	10

The initial outflow discharge from the reach is 8.0 m³/s.

/10

8. a) Explain hydraulic jump by the help of specific energy curve.

15

b) Explain wall type breakwater with a cross sectional view.