PCI3I101- FLUID MECHANICS & HYDRAULICS MACHINES <u>LESSON PLAN</u>

Semester- 3rd

Branch/Course- Civil Engineering

Branch/Course- Civil Engineering			
Lecture	Module	Topics to be delivered	
No			
01	I	Physical property of Fluid	
02	I	Density, specific gravity, specific weight, specific volume, surface tension and capillarity,	
		viscosity, compressibility and bulk modulus	
03	I	Fluid classification	
04	I	Pressure, pascal's law	
05	I	Pressure variation for incompressible fluid &manometer	
06	I	Hydrostatic pressure on submerged surface, force on a horizontal submerged plane	
07	I	Force on a vertical submerged plane surface	
08	I	Buoyancy and floatation	
09	I	Archimedes' principle, stability of immersed and floating bodies	
10	I	Determination of metacentric height	
11	II	Fluid kinematics	
12	II	Reynold's number, Acceleration of fluid particles	
13	II	Flow rate and continuity equation	
14	II	Differential equation of continuity	
15	II	Mathematical definitions of irrotational and rotational motion	
16	II	Circulation, potential function and stream function. Flow net	
17	III	Fluid dynamics	
18	III	Euler's equation along a streamline	
19	III	Bernoulli's equation and its application to siphon	
20	III	Venturimeter, orificemeter, pitot tube. Flow in pipes and ducts	
21	III	Loss due to friction, Minor energy losses in pipes	
22	III	Hydraulic gradient line (hgl), total energy line (tel)	
23	III	Power transmission in the fluid flow in pipes	
24	III	Fluid flow in pipes in series and parallel.	
25	IV	Hydraulic turbine: Classification, Impulse and Reaction turbine	
26	IV	Impulse turbine, Pelton wheel	
27	IV	Reaction Turbines: Francis turbine and Kaplan turbine	
28	IV	Velocity triangle and efficiencies, performance curve.	
29	IV	Function of draft tube and casing cavitation	
30	IV	Centrifugal pump & pump characteristic	
31	IV	NPSH and Cavitation, Reciprocating Pump, Working principle, Discharge	

Course Outcome

Course	Descriptions (Students will be able to)		
Outcome			
CO1	Understand the basic properties of fluids and apply Newton's Law of Viscosity in solving practical		
	problems.		
CO2	Understand the significance of basic principles of fluid statics and application of hydrostatic law in		
	determining forces on surfaces and hydraulic structures, floatation and stability of floating bodies like		
	boats, ships, naval vessels etc.		
CO3	Understand the principles of kinematics with specific emphasis on application of continuity equation,		
	stream function etc.		
CO4	Apply the principles of Bernoulli's equation in measurement of discharge in pipes, and in other pipe flow		
	problems.		
CO5	Computation of friction loss in laminar and turbulent flows.		
CO6	Understand the working principle of pumps and turbines.		