

PARALA MAHARAJA ENGINEERING COLLEGE, **BERHAMPUR**

LESSON PLAN

Semester: 4th **Session: Even**

Subject: (PCI4I001)- Structural Analysis-I (3-0-0) Branch/Course- Civil Engineering/ B.Tech

Name of Faculty:

Lecture No.	Module	Topic name to be covered	Remarks/ Sign of Faculty Member			
1	I	Introduction to statically indeterminate structures with reference to two dimensional structures. Determination of static and kinematic indeterminacy in beams and frames				
2	I	Analysis of continuous beam using three moment theorem				
3	I	Analysis of continuous beam using three moment theorem				
4	I	Analysis of continuous beam using three moment theorem				
5	I	Analysis of continuous beam using three moment theorem				
6	I	Introduction to force method, Consistent deformation method for propped cantilevers				
7	I	Consistent deformation method for Fixed beams				
8	I	Consistent deformation method for Continuous beams				
9	I	Introduction to displacement method, Difference between force and displacement method, Moment area method				
10	I	Deflection of statically determinate beams: Moment area method				
11	I	Deflection of statically determinate beams: Moment area method				
12	I	Deflection of statically determinate beams: Conjugate beam method				
13	I	Deflection of statically determinate beams: Conjugate beam method				
14	II	Deflection of statically determinate beams:Strain energy method, Virtual work method				
15	II	Deflection of statically determinate beams:Unit load method				
16	II	Betti's and Maxwell's laws, Castigliano's theorem, concept of minimum potential energy				
17	II	Deflection of statically determinate pin jointed plane trusses				

18	II	Analytical method and Williot-Mohr Diagram			
19	III	Analysis of redundant plane trusses and Introduction to space truss			
20	III	ILD for determinate beams for reaction, shear force and bending moment at a section			
21	III	Rolling loads and influence lines for simply supported beams			
22	III	Rolling loads and influence lines for simply supported beams			
23	III	ILD for point loads, wheel loads			
24	III	ILD for udl longer than span			
25	III	ILD for udl shorter than span			
26	III	ILD for udl shorter than span, and maximum bending moment envelope			
27	IV	Analysis of three hinged arches			
28	IV	ILD for three hinged arches			
29	IV	Suspension cable with three hinged stiffening girders			
30	IV	Suspension cable with three hinged stiffening girders			

Signature of faculty member

Counter Signature of HOD

Course	After completion of the course students will be able to		
Outcome			
CO1	Find the difference between statically determinate and indeterminate basic structural		
	systems such as trusses, beams, frames.		
CO2	Make use of classical methods and force method to solve statically indeterminate		
	structures.		
CO3	Utilize different methods to find out the slope and deflection of beams and truss.		
CO4	Apply the concept of ILD and moving loads on determinate structure.		
CO5	Analyze the performance of structural systems such as three hinged arch and suspension		
	cable under static loads and live loads.		